Mr. Kim's Course Yearly Plan	Email – kkim@wvschools.ca Website -	- https://mrkim.2myclass.com Classroom -	https://classroom.google.com Linear	– 43 weeks 301 days – 193 days or 3	37 weeks with 186 instructional days or 952 hours
------------------------------	-------------------------------------	--	-------------------------------------	-------------------------------------	---

Course	Week	Week	Week	Week	Week
IT 8	-Classroom Expectations & Procedures	-MYP Unit-	Data Analysis – summative task –	Keyboarding Technique – summative	Digital and Financial Literacy –
	-File Management	-Making Algorithmic Designs (MYP	WPM spreadsheet using data from	task – SMART goal setting – using	summative task – Everfi Ignition
	-SMART Goals	Criteria A, B, C, D)	typing quizzes and telling a story using	proper posture and finger technique on	Digital Wellness and Safety
	-set up Google Classroom and other LMS	Computational Thinking and	the bar chart as the visualization	a QWERTY keyboard to complete 10	1. Connections and Community
	-introduce algorithmic constructs	Design Process – summative task –		typing tests	2. Safety and Privacy
	(shapes and arguments, functions,	p5.js algorithmic constructs / HTML			3. Screen Time vs Online Time
	variables, if conditional statements, for	(shapes, shape			4. Technology and Privacy
	loops, mouse, key and text input, arrays)	parameters/arguments, variables,			5. Rights and Literacy
		libraries, functions, conditionals)			6. Evaluating Content

Course	September	October	November	December	January	February	March	April	May	June
	-Classroom	-MYP Unit –	- MYP Unit-			-MYP Unit – Data			-MYP Unit – Process	
	Expectations &	Problem Solving	Programming Unit			and Society Unit			Design Unit	
IT 9	Procedures	Unit				-				
			(use p5.js to create			(learn how			(discover the	
	-File	(explore problem	programs that			information is			programming	
	Management	solving process and	work on			represented,			constructs that	
		the different ways	algorithmic			collected, analyzed,			allows us to design	
	-SMART Goals	humans and	constructs)			and visualized by			apps)	
		computers solve				computers)				
	-set up Google	problems)	MYP Criteria			(investigate how			MYP Criteria	
	Classroom and		A, B, C, D			data is collected			A, B, C, D	
	other LMS	MYP Criteria C	8 weeks			online and weigh			7 weeks	
		2 weeks				the potential				
			Key Concepts:			benefits and harms			CS4All – App	
		-introduction to	U1 Draw and Draw			to individuals and			Inventor	
		computational	with Functions			society at large)				
		thinking	U2 Respond and						Unit 0 - Apps	
			Draw with Canva			MYP Criteria			Unit 1 – I have a	
		-algorithmic	U3 Arrays, Loops,			C, D			Dream App	
		framework – the	Media			2 weeks			Unit 2 – Paint Pot	
		building blocks of	U4 Motion, Objects,			-summative task -			Арр	
		programming	Transformation			manipulate data			Unit 3 – Game Apps	
			U5 Final Project			using an			Unit 4 – Magic 8 Ball	
		-summative task –				infographic to			Арр	
		recognize the	-summative task –			persuade an			Unit 5 – Design	
		different types of	create programs			audience on topic			Project	
		programming	using shape			of choice (use				
		constructs with	functions, function			Python modules –			-summative task -	
		pseudocode and	libraries,			Matplot lib – four			app design project	
		flowcharts	conditionals, event			subplots – scatter,				
			actions, arrays,			histogram, bar				
			loops, media,			chart, pie chart				
			motion, objects			with a story				

Course	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week
ICT 11	Programming	-Python	-Python	-Python	-Python	-Python	-Python	-Python	-Python	-Python	-Python	-Python	-Python
Programming	Constructs	Programming	Programming	Programming	Programming	Programming	Programming	Programming	Programming	Programming	Programming	Programming	Programming
		CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1	CMU CS1
ICTP 11	-Bad Choices:												
(4 credits)	An Illustrated	Unit 1 –	Unit 2 –	Unit 3 –	Unit 4 –	Unit 5 –	Unit 6 –	Unit 7 –	Unit 8 –	Unit 9 –	Unit 10 –	Unit 11 – 2D	Unit 12 –
CI	Introduction	Creating	Functions,	Mouse	More	Complex	Groups,	New	Math	Types,	Lists and	Lists and	Final
-Classroom	to Commutational	Drawings	Mouse	Motion	Conditionals.	Conditionals	Step Events,	Shapes,	Functions,	Strings, and	Return	Board	Project
expectations	Thinking		Events,	Events,	Key Events,	and More	Motion	Local	Random	While Loops	Values	Games	
& Flocedules	THINKING	-basic	Properties	Conditionals,	Methods	Key Events		Variables,	Values, and	(Optional)			-final create
-File	-Algorithm	-colours		Helper			-groups	For Loops,	Nested		-types and	-2D lists	project
Management	Framework -	-shapes	-functions	Functions	-more	-complex	-group	Looping	Loops	-types and	inputs	-board games	
	Programming	-	-mouse		conditionals	conditionals	methods	Through	-	inputs	-strings		
-SMART Goals	Constructs		events	-mouse	(if-elif-else)	-more kev	-step events	Groups	-math	-strings	-string		
	(flowcharts		-properties	motions	-kev events	events	and motion	-	functions	-string	methods		
-set up Google	and		r · r · · · · ·	events	-methods		-special	-basic	-random	methods	-While Loops		
Classroom and	pseudocode)			-conditionals	mounouo		types of	-colours	values	-While Loons	1		
other LMS	(sequencing,			-helner			motion	-shapes	-nested For	while hoops			
	selection,			functions			motion	Shapes	Loops				
	iteration,			Tunctions					Loops				
	combination)												
	combinationj												

Course	Week	Week	Week	Week	Week	Week	Week	Week	Week
	-Classroom	- Python	-Python	Unit 1 - Chatbots	Unit 2 –	Unit 3 – Under	Unit 4 - Graphics	Unit 5 – Computer	Unit 6 – Internet and
	Expectations	Programming	Chatbots	with Personality	Recommendation	the Hood	and Animation	Vision	Big Data
ICT 11	& Procedures	Unit	Programming	_	Systems				_
Programming				The theme of this		This unit	The theme of this	This unit introduces the	This unit emphasizes
Pre-AP	-File	-Bad Choices: An	Unit 0 – What is	unit is "Chatbots",	The theme of this	explains to	unit is "Graphics and	field of Computer Vision.	the recent need to
	Management	Illustrated	Computer	and students are	unit is "You might	students how	Animation" and	It reveals the RGB	process large amounts
ICTP 11	U	Introduction to	Science?	introduced to the	also like" and	their code is	reminds students	representations of pixels	of data, thanks to the
(4 credits)	-SMART Goals	Computational		idea of the Turing	introduces	eventually	that many 3D games	and provides a first	Internet. Students use
		Thinking	This unit	Test and the field of	students to	translated into	and movies are built	experience with image	large datasets pulled
	-set up Google		introduces	natural language	recommendation	binary	with code.	processing. As image	from the Internet to
	Classroom	-Algorithm	Computing	processing.	systems such as	representations.	Recursion is taught	processing can be slow, it	learn searching and
	and other LMS	Framework -	Science as the	• variables, naming,	those used in	 binary, ASCII, 	here using a visual	also motivates the need	sorting algorithms, as
		Programming	design of	concatenation, input	Netflix and	bytes, Unicode,	recursive tree	for writing efficient code.	well as their
		Constructs	algorithms and	(first example only),	Amazon.	string indexing,	example, and	• modules, from import,	complexities.
		(flowcharts and	their	lists, modules	 arithmetic 	loops over	functions are taught	2D arrays, nested loops	 list/string indexing
		pseudocode)	implementation	 conditionals 	operators, loops	strings,	in order to draw	(images), RGB pixel	from the end, linear
		(sequencing,	using code. It	(if/else, if/elif, if	with range,	exponents	pictures with	representations, image	search, sorting,
		selection,	also covers the	only), Boolean	string/int/float	-	various parameters.	processing, tuples, tuples	selection sort,
		iteration,	history of	statements, logical	data types,		• Turtle module,	as return values, PIL	introduction to
		combination)	Computing	operators (or/and)	accumulators		functions and	image module	complexity,
			Science,	 attributes of good 	• type conversion,		parameters,	 making your own 	• swapping elements,
			including the	software and clean	list length		functions with	module, understanding	range sub listing
			first	code, code reviews,	 working with 		Turtle, local	Python documentation	(begin/end), list slicing,
			programmer.	software	data files, reading		variables, more	•	Binary Search,
			 problem 	engineering	files, splitting		Turtle methods,	appending/concatenatin	Algorithm analysis, Big-
			solving,	 syntax and 	strings into lists,		Turtle tutorials (all	g to lists, string	O Notation (n, n2, logn),
			algorithms,	semantic error	indexing/accessing		pages), while loop,	formatting for output	Analysis of: Linear
			comments and	types, string	elements in lists,		while for input	 problem solving 	Search, Selection Sort,
			output	methods (except	comparison		 Recursion, three 	strategies: break down	Binary Search
				9.5.1), in keyword	operators,		laws of recursion,	large problems into	 recursive summation,
				for lists and strings	operator		dictionaries	smaller ones, test small	recursive Fibonacci,
				 function chaining, 	precedence		 Fruitful functions, 	pieces of code first	binary search analysis
				for loops, break	 comparing two 		sentinel values and	 efficiency, using the 	proof, remainder
				keyword, creating	lists, measuring		validating input,	time module to profile	(modulo), converting
				lists from input,	similarity, nested		logical operator	your code	base using fruitful
				integer datatype,	loops (files and		(not)		recursion, Python
				addition	lists)		-		beyond the browser

Course	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week
	-Classroom	- Python	CMU Academy	CMU Academy	CMU Academy	CMU Academy	CMU Academy			
	Expectations &	Programming	Unit 1 – Intro to	Unit 2 –	Unit 3 – Groups,	Unit 4 –	Unit 5 - Create			
	Procedures	Unit APCSP CMU	CMU Graphics	Functions,	Lists, and Loops	Complex	Performance			
ICT 12		Academy	-	Mouse Events,		Conditionals,	Task			
Programming	-File Management	-	Learn	Conditionals	Build programs	More Events,				
0 0	-SMART Goals	-Bad Choices: An	fundamental		that implement	and Libraries	Practice and			
ICTP 12	Similar douis	Illustrated	coding	Expand your	iterating over		complete the			
(4 credits)	-set up Google	Introduction to	techniques by	programming	loops and group	Learn how to	Create			
	Classroom and	Computational	drawing images	abilities by	objects and data.	manage complex	Performance			
	other LMS	Thinking	in Python.	introducing		inputs and	Task (PT).			
		Ū		events and		events, as well as				
		-Algorithm		coding		simplify your				
		Framework -		techniques to		code by using				
		Programming		behave		pre-written code				
		constructs		differently based		from libraries.				
		(flowcharts and		on input.						
		pseudocode)								
		(sequencing,								
		selection,								
		iteration,								
		combination)								

Course	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week
	Unit 1 - Digital	Unit 3 – Intro to	Unit 4 –	Unit 6 - Lists,	Unit 7 –	Unit 8 –	Unit 9 - Create	Unit 10 -	Exam Prep - (2	CSP Post-AP -
AP Computer	Information (3	App Design (3	Variables,	Loops, and	Parameters,	Cybersecurity	PT (4 weeks)	Algorithms (3	weeks)	Databases and
Science	weeks):	weeks)	Conditionals, and	Traversals (4	Return, and	and Global		weeks)	The exam has a	Using Data in
Principles 12	Students		Functions (3	weeks)	Libraries (3	Impact (2	This short unit		time limit of 120	your Apps (20
(Blended)	explore the way	Students design	weeks)	Students learn to	weeks)	weeks)	prepares	Students learn to	minutes. There	hours – 17
	computers store	their first app	Students expand	build apps that			students to	design and	are 70 multiple	classes)
APCSP 12	and represent	while learning	the types of apps	use, and process	Students learn	Students	complete the	analyze	choice questions.	
(4 credits)	complex	both fundamental	they can create as	lists of	how to design	research and	AP® Create	algorithms to	57 of these	5% to final term
	information like	programming	they learn how to	information. Like	clean and	debate current	Performance	understand how	questions are	mark – complete /
	numbers, text,	concepts and	store information	the previous unit,	reusable code	events at the	Task (PT).	they work and	single select, 5 are	incomplete
	images, and	collaborative	(variables), make	students learn the	that can be	intersection of	Students will	why some	single select with	
	sound.	software	decisions	core concepts of	shared with a	data, public	have learned the	algorithms are	a reading about a	
		development	(conditionals), and	lists, loops, and	single classmate	policy, law,	skills and	considered more	computing	
	Major	processes	better organize	traversals through	or the entire	ethics, and	concepts	efficient than	innovation, and 8	
	Assessment		code (functions).	a series of EIPM	world.	societal impact.	necessary to	others. This	are multiple	
	Project:	Major		lesson sequences.			complete the	short unit is	select. This is	
	The unit project	Assessment	Major		Major	Major	task in previous	entirely	worth 70% of the	
	asks students to	Project:	Assessment	Major	Assessment	Assessment	units and will	unplugged and	total score.	
	consider and	The unit project	Project:	Assessment	Project:	Project:	even have seen	features hands-		
	debate issues that	asks students to	The unit project	Project:	The unit project	Students	components of	on activities that		
	arise in modern	collaborate with a	asks students to	The unit project	asks students to	complete the	the task itself.	help students get	Students will	
	society due to	classmate to	design an app that	asks students to	design a library	"future school"		an intuitive	receive a final	
	the digitizing of	design an app that	makes a	spend five days as	of functions that	simulation	Major	sense of how	exam score of 1–5,	
	information.	can teach others	recommendation	part of a	they can share	throughout this	Assessment	quickly different	derived from their	
		about a topic of	based on input	"Hackathon"	with classmates.	unit. Working in	Project:	algorithms run	performance on	
	Unit 2 – The	shared interest.	information from	project that they	Their library	teams of roughly	The unit project	and the pros and	both the through-	
	Internet (3	Students practice	the user. Students	have nearly	must contain at	five people,	asks students to	cons of different	course assessment	
	weeks)	interviewing	are given a great	complete	least two	students are	complete the	algorithms.	and the end-of-	
	Students learn	classmates to	deal of freedom to	independence to	functions and at	assigned a role	Create PT in 12		course exam.	
	how the	identify the goals	choose their topic,	scope and design.	least one of those	and a set of	hours. This is	Major		
	Internet works	of the project,	design their user	Students must	functions must	interests that	worth 30% of	Assessment	AP Score	
	and discuss its	mockup designs,	interface, and	choose one	include a	they'll need to	the total score.	Project:		
	impacts on	collaboratively	decide how to	dataset from the	parameter,	investigate. They		Students will	5 – Extremely	
	politics, culture,	program the app,	actually program	Data Library in	return, a loop,	research real-		complete an	Well Qualified	
	and the	and run simple	their app's	AppLab to be a	and an if-	world		end-of-unit	4 – Well Qualified	
	economy.	user tests. The app	behavior.	component of	statement.	innovations that		assessment that	3 – Qualified	
		itself must include		their project to		could improve		is aligned with	2 – Possibly	
	Major	at least three	Unit 5 - Data (2	demonstrate what		schools and align		CS Principles	Qualified	

								<i>c</i> 1	4	
	Assessment	screens and	weeks)	they have learned		with the interests		framework	1 – No	
	Project:	demonstrate what		about lists and list		of their character.		objectives	Recommendation	
	The unit project	students have	Students explore	processing;		Throughout the		covered in this		
	asks students to	learned about user	and visualize	otherwise, scoping		unit, they are		unit.		
	design a policy	interface design	datasets from a	the project is		given				
	position for an	and event-driven	wide variety of	completely up to		opportunities to				
	imaginary	programming.	topics as they hunt	them.		refine their				
	political		for patterns and			proposals as a				
	candidate		try to learn more			team and debate				
	related to an		about the world			the benefits and				
	"Internet		around them from			risks of different				
	Dilemma."		the data.			computing				
	Students must					innovations.				
	analyze news		Major							
	stories about		Assessment							
	their topic to		Project:							
	identify		Students use the							
	impacted		data visualizer to							
	groups, explain		find and present a							
	those groups'		data story. Using							
	interests,		what they've							
	explain		learned about the							
	technical		data analysis							
	background		process, students							
	about the		either choose a							
	dilemma, and		dataset inside the							
	then		data library or							
	recommend a		unload one of their							
	policy solution		own and create							
	that the		visualizations that							
	candidate		find interesting							
	should advocate		nottorns that							
	for.		patterns that							
			possibly reveal new							
			insights and							
			knowledge.							
:	*the topics and assi	gnments in the above	courses are subject to	change without notice	e at the discretion of	the instructor depen	ding on the availabi	lity of time, resource	es, and adequate facilit	ty*
S	chool year 10 mont	hs - 43 weeks - 301 da	ys **School Act - sch	lool year approximate	ly 193 days with 186	days in session or 3	7 weeks or 952 hou	rs of instruction for s	students in grades 8 to	o 12**
			*:	*semester system 19 v	veeks - 88 instructio	nal days – 117 hours [:]	**			

Course	Week	Week	Week	Week	Week	Week	Week	Week	Week	Week
	-Expectations and	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MYP Unit-
	Procedures	-Team Games-	-Team Games-	-Dance-	-Team Games-	-Movement-	-Weight Room /	-Racket Games-	-Non-Invasive	-Minor Games-
Physical		Goalie Games-	Goalie Games-	Solo and Partner			Active Living-		Games-	
Education 8 Coed	-MYP Unit-		continued		Basketball	Wrestling		Badminton		Capture the Flag
	-Team Games-	Soccer		-Dance Forms-	Kabbadi		-Weight room	Pickleball	Volleyball	Man Tracker
	End Zone Games-	Lacrosse	Floor Hockey	Polka Dancing	Tchoukball		Introduction	Tennis	Softball	Man Hunter
			Floorball	Square Dancing	Quidditch	Open Parachute	-Weight room		Stickball	Pirate Ship
	Rugby	Interdisciplinary	Ringette	Jive		Mental Health-	Safety		Cricket	Hide and Seek
	Football	Unit (ID)		Cha Cha	ACT High School		-Health		Disc Golf	Red Light Green
	Ultimate			Mexican Hat	CPR and AED	-New Hurdles -	Screening			Light
		Baseline Testing	Sexual Health	Dance	and Opioid	Starting High	-Goal Setting		Post-Testing -	Red Rover
		- Fitness,	Education	Electric Slide	Overdose	School	-Strength and		Fitness, Strength,	Duck Duck Goose
		Strength, and	-The Circuit	Macarena	Response	-Peer Inclusion	Conditioning		and Conditioning	British Bulldogs
		Conditioning	Sexual Health	Bird Dance	Training	and Exclusion	Program			Star Wars
			Stations	Limbo	Program	-Understanding	Development			GaGa Ball
			-cybersafe	Line Dancing		Mental Health				Juggling
			-sexual			-Independent				Kubb Game
			exploitation			Thinking and				Speed Cup
			and healthy			Healthy Decision				Stacking
			relationships			Making				First People's
										Games
			N D		Timed Runs /	Core Training				
			Movement, B	ones, Muscles, Flow	Mobility Sequence, I	Mental Health, Health	ny Sleeping and Eati	ng, Gratitude		
			Milest		PE Leadersi	lip Training				
	Erm a station a and	MVD Unit	What MVD Linit	IS a warmup? How C	10 I learn a new skill	How do I improve i	MVD Linit	MVD Unit	MVD Unit	MVD II:
	-Expectations and	-MYP Unit-	-MYP UIII-	-MYP Unit-	-MYP Unit-	-MYP Unit-	-MIP UIII-	-MIPUIII-	-MYP UIII-	-MYP Unit-
Dhysical	Procedures	- Team Games-	- Team Games-	-Dance-	-Team Games-	-Movement-	-weight Room /	-Racket Sports-	-Non-Invasive	-Minor Games-
Physical Education 0 Cood	MVD II	Goalle Galles-	Goalle Games-	Solo and Partner	Dealasthall	Mussellin a	Active Living-	Deducintan	Sports-	Conturo the Elec
Education 9 Coed	-MIP Unit-	Conner	continued	Danas Farma	Basketball	wresting	Waight no one	Bauminton	Vallesshall	Capture the Flag
	- Team Games-	Soccer	Ele en He eleen	-Dance Forms-	Kabbaul Tahawlahall	On an Dava shuta	-weight room	Terrie	Volleyball	Man Tracker
	End Zone Games-	Laciosse	Floorball	Fuika Dalicilig	Quidditch	Montal Health	Weight room	rennis	Stickhall	Dirate Ship
	Pughy	Pacolino Tosting	Pingotto	Square Dancing	Quidancii	Mental nearth-	- weight room		Crickot	Filate Ship
	Football	Fitness	Kilgette	Jive Cha Cha	ACT High School	Poundarios and	Joalth		DiscColf	Pod Light Cross
	FUULDAII	- ritiless,		Ulid Ulid Movicon Hat	CDD and AED	-boundaries and	-nealui		DISC GOIL	Keu Lignt Green
	onimate	Su engui, and		mexican Hat	CPK and AED	Consent	Screening	1		Lignt

Conditioning		Dance Electric Slide Macarena Bird Dance Limbo Line Dancing	and Opioid Overdose Response Training Program	-Self Image and Stereotypes -Eating and Body Image Challenges -Objectification and Respect	-Goal Setting -Strength and Conditioning Program Development		Interdisciplinary Unit (ID) Post-Testing - Fitness, Strength, and Conditioning	Red Rover Duck Duck Goose British Bulldogs Star Wars GaGa Ball Juggling Kubb Game Speed Cup Stacking First People's Games
	Movement, E What	ones, Muscles, Flow is a warmup? How o	/ Timed Runs Mobility Sequence PE Leaders do I learn a new skill	Core Training Mental Health, Healtl hip Training ? How do I improve 1	ny Sleeping and Eatin ny locomotor mover	ng, Gratitude nent?		